Correction: Membrane Partitioning of Anionic, Ligand-Coated Nanoparticles Is Accompanied by Ligand Snorkeling, Local Disordering, and Cholesterol Depletion

نویسندگان

  • Paraskevi Gkeka
  • Panagiotis Angelikopoulos
  • Lev Sarkisov
  • Zoe Cournia
چکیده

Intracellular uptake of nanoparticles (NPs) may induce phase transitions, restructuring, stretching, or even complete disruption of the cell membrane. Therefore, NP cytotoxicity assessment requires a thorough understanding of the mechanisms by which these engineered nanostructures interact with the cell membrane. In this study, extensive Coarse-Grained Molecular Dynamics (MD) simulations are performed to investigate the partitioning of an anionic, ligand-decorated NP in model membranes containing dipalmitoylphosphatidylcholine (DPPC) phospholipids and different concentrations of cholesterol. Spontaneous fusion and translocation of the anionic NP is not observed in any of the 10-µs unbiased MD simulations, indicating that longer timescales may be required for such phenomena to occur. This picture is supported by the free energy analysis, revealing a considerable free energy barrier for NP translocation across the lipid bilayer. 5-µs unbiased MD simulations with the NP inserted in the bilayer core reveal that the hydrophobic and hydrophilic ligands of the NP surface rearrange to form optimal contacts with the lipid bilayer, leading to the so-called snorkeling effect. Inside cholesterol-containing bilayers, the NP induces rearrangement of the structure of the lipid bilayer in its vicinity from the liquid-ordered to the liquid phase spanning a distance almost twice its core radius (8-10 nm). Based on the physical insights obtained in this study, we propose a mechanism of cellular anionic NP partitioning, which requires structural rearrangements of both the NP and the bilayer, and conclude that the translocation of anionic NPs through cholesterol-rich membranes must be accompanied by formation of cholesterol-lean regions in the proximity of NPs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transmembrane and cytoplasmic domains of syndecan mediate a multi-step endocytic pathway involving detergent-insoluble membrane rafts.

Syndecan heparan sulphate proteoglycans directly mediate a novel endocytic pathway. Using Chinese hamster ovary cells expressing the human syndecan 1 core protein or a chimaeric receptor, FcR-Synd, consisting of the ectodomain of the IgG Fc receptor Ia linked to the transmembrane and cytoplasmic domains of syndecan 1, we previously reported that efficient internalization is triggered by ligand ...

متن کامل

Comparison of new optical sensor based on triazene ligand immobilized on PVC and triacetylcellulose membranes for Hg (II) Ion

For spectrophotometric analysis of Hg (II) ions, we have used and compared two membranes preparation methods using different polymer; one is poly(vinyl chloride) (PVC) and the other is triacetylcellulose (TAC). In the case of TAC membrane, it was treated with a ligand solution (1.166 × 10-3 mole L-1) in ethylenediamine at the ambient temperature for almost 2-5 min. However, in the case of PVC m...

متن کامل

NrCAM coupling to the cytoskeleton depends on multiple protein domains and partitioning into lipid rafts.

NrCAM is a cell adhesion molecule of the L1 family that is implicated in the control of axonal growth. Adhesive contacts may promote advance of the growth cone by triggering the coupling of membrane receptors with the F-actin retrograde flow. We sought to understand the mechanisms leading to clutching the F-actin at the site of ligand-mediated clustering of NrCAM. Using optical tweezers and sin...

متن کامل

Cholesterol modulates ligand binding and G-protein coupling to serotonin(1A) receptors from bovine hippocampus.

The serotonin(1A) (5-HT(1A)) receptor is an important member of the superfamily of seven-transmembrane domain G-protein-coupled receptors. We have examined the modulatory role of cholesterol on the ligand binding activity and G-protein coupling of the bovine hippocampal 5-HT(1A) receptor by depleting cholesterol from native membranes using methyl-beta-cyclodextrin (MbetaCD). Removal of choleste...

متن کامل

Design and Fabrication of PVC Membrane Electrode Based on Netural Ligand (E)-N'-(1-(2-Hydroxyphenyl)Ethylidene)Benzohydrazi for Teramadol hydrochloride Measurement in Drugs and Biological Fluids

Here, a simple, quick, Low cost and sensitive Potentiometric method is described for tramadol hydrochloride measurement using .PVC membrane electrode based on neutral ligand (E)-N'-(1-(2-hydroxyphenyl)ethylidene)benzohydrazid. Besides, effect of various parameters like ionic additives, membrane solvent and pH on the Potentiometric response of the electrode are investigated. The best electrode p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014